Nonlinear Dimensionality Reduction by Multi Layer Perceptron Using Superposed Energy

T. Takahashi, and R. Tokunaga

Proceedings of 1999 International Symposium on Nonlinear Theory and its Applications(NOLTA99), vol. 2, pp. 863--866, 1999.

Abstract

We investigate an energy function for MLP called superposed energy. Applying to autoassociative learning of a sandglass-type MLP, it can adaptively adjust the effective number of the bottleneck-layer units to the intrinsic dimensionality of nonlinear data, and the optimal dimensionality reduced representation can be extracted after learning.


トップ   編集 凍結 差分 履歴 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2014-08-13 (水) 13:45:19